A Robust Estimation Method for Camera Calibration with Known Rotation
Autor: | Dov Eilot, Amir Egozi, Peter Maass, Chen Sagiv |
---|---|
Rok vydání: | 2015 |
Předmět: |
business.industry
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Point cloud General Medicine Accelerometer Robustness (computer science) Camera auto-calibration Inertial measurement unit Image scaling Structure from motion Computer vision Artificial intelligence business Mathematics Camera resectioning |
Zdroj: | Applied Mathematics. :1538-1552 |
ISSN: | 2152-7393 2152-7385 |
DOI: | 10.4236/am.2015.69137 |
Popis: | Imagine that hundreds of video streams, taken by mobile phones during a rock concert, are uploaded to a server. One attractive application of such prominent dataset is to allow a user to create his own video with a deliberately chosen but virtual camera trajectory. In this paper we present algorithms for the main sub-tasks (spatial calibration, image interpolation) related to this problem. Calibration: Spatial calibration of individual video streams is one of the most basic tasks related to creating such a video. At its core, this requires to estimate the pairwise relative geometry of images taken by different cameras. It is also known as the relative pose problem [1], and is fundamental to many computer vision algorithms. In practice, efficiency and robustness are of highest relevance for big data applications such as the ones addressed in the EU-FET_SME project SceneNet. In this paper, we present an improved algorithm that exploits additional data from inertial sensors, such as accelerometer, magnetometer or gyroscopes, which by now are available in most mobile phones. Experimental results on synthetic and real data demonstrate the accuracy and efficiency of our algorithm. Interpolation: Given the calibrated cameras, we present a second algorithm that generates novel synthetic images along a predefined specific camera trajectory. Each frame is produced from two “neighboring” video streams that are selected from the data base. The interpolation algorithm is then based on the point cloud reconstructed in the spatial calibration phase and iteratively projects triangular patches from the existing images into the new view. We present convincing images synthesized with the proposed algorithm. |
Databáze: | OpenAIRE |
Externí odkaz: |