>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared
Autor: | L. Barraud, Zachary C. Holman, S. Morel, Christophe Ballif, S. De Wolf, Antoine Descoeudres |
---|---|
Rok vydání: | 2013 |
Předmět: |
Amorphous silicon
Materials science Silicon Passivation business.industry chemistry.chemical_element Heterojunction Carrier lifetime Condensed Matter Physics Electronic Optical and Magnetic Materials law.invention chemistry.chemical_compound chemistry law Solar cell Optoelectronics Wafer Crystalline silicon Electrical and Electronic Engineering business |
Zdroj: | IEEE Journal of Photovoltaics. 3:83-89 |
ISSN: | 2156-3403 2156-3381 |
DOI: | 10.1109/jphotov.2012.2209407 |
Popis: | The properties and high-efficiency potential of front- and rear-emitter silicon heterojunction solar cells on n- and p-type wafers were experimentally investigated. In the low-carrier-injection range, cells on p-type wafers suffer from reduced minority carrier lifetime, mainly due to the asymmetry in interface defect capture cross sections. This leads to slightly lower fill factors than for n-type cells. By using high-quality passivation layers, however, these losses can be minimized. High open-circuit voltages (Vocs) were obtained on both types of float zone (FZ) wafers: up to 735 mV on n-type and 726 mV on p-type. The best Voc measured on Czochralski (CZ) p-type wafers was only 692 mV, whereas it reached 732 mV on CZ n-type. The highest aperture-area certified efficiencies obtained on 4 cm2 cells were 22.14% (Voc = 727 mV , FF = 78.4%) and 21.38% (Voc = 722 mV, FF = 77.1%) on n- and p-type FZ wafers, respectively, proving that heterojunction schemes can perform almost as well on high-quality p-type as on n-type wafers. To our knowledge, this is the highest efficiency ever reported for a full silicon heterojunction solar cell on a p-type wafer, and the highest Voc on any p-type crystalline silicon device with reasonable FF. |
Databáze: | OpenAIRE |
Externí odkaz: |