On Weyl’s Theorem for Functions of Operators
Autor: | Xiao Hong Cao, Lei Dai, Jiong Dong |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Acta Mathematica Sinica, English Series. 35:1367-1376 |
ISSN: | 1439-7617 1439-8516 |
DOI: | 10.1007/s10114-019-7512-8 |
Popis: | Let H be a complex separable infinite dimensional Hilbert space. In this paper, a variant of the Weyl spectrum is discussed. Using the new spectrum, we characterize the necessary and sufficient conditions for both T and f(T) satisfying Weyl’s theorem, where f ∊ Hol(σ(T)) and Hol(σ(T)) is defined by the set of all functions f which are analytic on a neighbourhood of σ(T) and are not constant on any component of σ(T). Also we consider the perturbations of Weyl’s theorem for f(T). |
Databáze: | OpenAIRE |
Externí odkaz: |