Klein–Gordon equation and thermodynamic properties with the Hua plus modified Eckart potential (HPMEP)
Autor: | A. Omame, C. J. Okereke, I. J. Njoku, C. P. Onyenegecha, U. M. Ukewuihe, E. E. Oguzie |
---|---|
Rok vydání: | 2021 |
Předmět: |
Fluid Flow and Transfer Processes
Physics symbols.namesake Partition function (statistical mechanics) symbols Mathematics::Mathematical Physics General Physics and Astronomy Limit (mathematics) Wave function Klein–Gordon equation Eigenvalues and eigenvectors Schrödinger equation Mathematical physics |
Zdroj: | The European Physical Journal Plus. 136 |
ISSN: | 2190-5444 |
DOI: | 10.1140/epjp/s13360-021-02142-z |
Popis: | We apply the Nikiforov–Uvarov method to solve the Klein–Gordon equation with the Hua plus modified Eckart potential (HPMEP). The energy eigenvalues and corresponding wave functions are obtained analytically. We show that in the non-relativistic limit, the solution of Klein–Gordon equation reduces to that of Schrodinger equation. Special cases of HPMEP such as modified Eckart, Hua, Morse and Poschl–Teller Potentials are also reported. Furthermore, the partition function and other thermodynamic properties are studied for H2, CO, NO and N2 molecules. |
Databáze: | OpenAIRE |
Externí odkaz: |