Klein–Gordon equation and thermodynamic properties with the Hua plus modified Eckart potential (HPMEP)

Autor: A. Omame, C. J. Okereke, I. J. Njoku, C. P. Onyenegecha, U. M. Ukewuihe, E. E. Oguzie
Rok vydání: 2021
Předmět:
Zdroj: The European Physical Journal Plus. 136
ISSN: 2190-5444
DOI: 10.1140/epjp/s13360-021-02142-z
Popis: We apply the Nikiforov–Uvarov method to solve the Klein–Gordon equation with the Hua plus modified Eckart potential (HPMEP). The energy eigenvalues and corresponding wave functions are obtained analytically. We show that in the non-relativistic limit, the solution of Klein–Gordon equation reduces to that of Schrodinger equation. Special cases of HPMEP such as modified Eckart, Hua, Morse and Poschl–Teller Potentials are also reported. Furthermore, the partition function and other thermodynamic properties are studied for H2, CO, NO and N2 molecules.
Databáze: OpenAIRE