Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health
Autor: | Colin D Steer, Peter Rzehak, Eva Lattka, Berthold Koletzko, Claudia Glaser |
---|---|
Rok vydání: | 2011 |
Předmět: |
chemistry.chemical_classification
Genetics 0303 health sciences Nutrition and Dietetics biology 030309 nutrition & dietetics Public Health Environmental and Occupational Health food and beverages Obstetrics and Gynecology Single-nucleotide polymorphism Breast milk 3. Good health 03 medical and health sciences chemistry.chemical_compound Fatty acid desaturase chemistry Docosahexaenoic acid Pediatrics Perinatology and Child Health Genetic variation biology.protein lipids (amino acids peptides and proteins) Arachidonic acid Fatty Acid Desaturase 1 030304 developmental biology Polyunsaturated fatty acid |
Zdroj: | Maternal & Child Nutrition. 7:27-40 |
ISSN: | 1740-8695 |
DOI: | 10.1111/j.1740-8709.2011.00319.x |
Popis: | Blood and tissue contents of polyunsaturated fatty acid (PUFA) and long-chain PUFA (LC-PUFA) are related to numerous health outcomes including cardiovascular health, allergies, mental health and cognitive development. Evidence has accumulated to show that in addition to diet, common polymorphisms in the fatty acid desaturase (FADS) gene cluster have very marked effects on human PUFA and LC-PUFA status. Recent results suggest that in addition to fatty acid desaturase 1 and fatty acid desaturase 2, the gene product of fatty acid desaturase 3 is associated with desaturating activity. New data have become available to show that FADS single nucleotide polymorphisms (SNPs) also modulate docosahexaenoic acid status in pregnancy as well as LC-PUFA levels in children and in human milk. There are indications that FADS SNPs modulate the risk for allergic disorders and eczema, and the effect of breastfeeding on later cognitive development. Mechanisms by which FADS SNPs modulate PUFA levels in blood, breast milk and tissues should be explored further. More studies are required to explore the effects of FADS gene variants in populations with different ethnic backgrounds, lifestyles and dietary habits, and to investigate in greater depth the interaction of gene variants, diet and clinical end points, including immune response and developmental outcomes. Analyses of FADS gene variants should be included into all sizeable cohort and intervention studies addressing biological effects of PUFA and LC-PUFA in order to consider these important confounders, and to enhance study sensitivity and precision. |
Databáze: | OpenAIRE |
Externí odkaz: |