Positive linear operators and the approximation of continuous functions on locally compact abelian groups

Autor: Walter R. Bloom, Joseph F. Sussich
Rok vydání: 1980
Předmět:
Zdroj: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics. 30:180-186
ISSN: 0263-6115
DOI: 10.1017/s1446788700016475
Popis: In 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2π-periodic functions and limn→rTnf = f uniformly for f = 1, cos and sin. then limn→rTnf = f uniformly for all f∈C. We extend this result to spaces of continuous functions defined on a locally compact abelian group G, with the test family {1, cos, sin} replaced by a set of generators of the character group of G.
Databáze: OpenAIRE