Positive linear operators and the approximation of continuous functions on locally compact abelian groups
Autor: | Walter R. Bloom, Joseph F. Sussich |
---|---|
Rok vydání: | 1980 |
Předmět: | |
Zdroj: | Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics. 30:180-186 |
ISSN: | 0263-6115 |
DOI: | 10.1017/s1446788700016475 |
Popis: | In 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2π-periodic functions and limn→rTnf = f uniformly for f = 1, cos and sin. then limn→rTnf = f uniformly for all f∈C. We extend this result to spaces of continuous functions defined on a locally compact abelian group G, with the test family {1, cos, sin} replaced by a set of generators of the character group of G. |
Databáze: | OpenAIRE |
Externí odkaz: |