A geometrically nonlinear elongation of a plane with an elliptic inclusion

Autor: L. G. Smirnov, I. I. Fedik, S. V. Priimak
Rok vydání: 1993
Předmět:
Zdroj: Journal of Soviet Mathematics. 64:978-983
ISSN: 1573-8795
0090-4104
DOI: 10.1007/bf01140329
Popis: We deduce relations in geometrically nonlinear formulation for the stresses and displacements on the boundary of an elliptic cut containing an inclusion with elastic characteristics different from the elastic characteristics of the base material. We find the dependence of the stress concentration on the size of the tensile force. We show the necessity of taking account of the geometric nonlinearity for low-modulus materials with nonuniformities. We give the dependence of the stress concentration on the size of the tensile forces for various ratios of elastic constants for the inclusion and the base material.
Databáze: OpenAIRE