Scattering Theory for CMV Matrices: Uniqueness, Helson–Szegő and Strong Szegő Theorems
Autor: | Peter Yuditskii, Alexander Kheifets, Franz Peherstorfer, L. Golinskii |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Integral Equations and Operator Theory. 69:479-508 |
ISSN: | 1420-8989 0378-620X |
DOI: | 10.1007/s00020-010-1859-7 |
Popis: | We develop a scattering theory for CMV matrices, similar to the Faddeev–Marchenko theory. A necessary and sufficient condition is obtained for the uniqueness of the solution of the inverse scattering problem. We also obtain two sufficient conditions for uniqueness, which are connected with the Helson–Szegő and the strong Szegő theorems. The first condition is given in terms of the boundedness of a transformation operator associated with the CMV matrix. In the second case this operator has a determinant. In both cases we characterize Verblunsky parameters of the CMV matrices, corresponding spectral measures and scattering functions. |
Databáze: | OpenAIRE |
Externí odkaz: |