Polynomial and signature invariants for pseudo-links via Goeritz matrices

Autor: Suhyeon Jeong, Jieon Kim, Sang Youl Lee
Rok vydání: 2022
Předmět:
Zdroj: Journal of Knot Theory and Its Ramifications. 31
ISSN: 1793-6527
0218-2165
Popis: In this paper, we introduce the Goeritz matrix for a pseudo-link whose entries lie in the Laurent polynomial ring [Formula: see text], which generalizes the Goeritz matrix for a classical link. We show that the determinant of a modified Goeritz matrix gives a Laurent polynomial invariant for pseudo-links in one variable u with integer coefficients. We also introduce the notions of the signature, determinant, and nullity of pseudo-links. Further, we discuss some properties of the invariants and compute the polynomials and those numerical invariants for several pseudo-knot families.
Databáze: OpenAIRE