Polynomial and signature invariants for pseudo-links via Goeritz matrices
Autor: | Suhyeon Jeong, Jieon Kim, Sang Youl Lee |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Knot Theory and Its Ramifications. 31 |
ISSN: | 1793-6527 0218-2165 |
Popis: | In this paper, we introduce the Goeritz matrix for a pseudo-link whose entries lie in the Laurent polynomial ring [Formula: see text], which generalizes the Goeritz matrix for a classical link. We show that the determinant of a modified Goeritz matrix gives a Laurent polynomial invariant for pseudo-links in one variable u with integer coefficients. We also introduce the notions of the signature, determinant, and nullity of pseudo-links. Further, we discuss some properties of the invariants and compute the polynomials and those numerical invariants for several pseudo-knot families. |
Databáze: | OpenAIRE |
Externí odkaz: |