Modeling study of the impact of complex terrain on the surface energy and hydrology over the Tibetan Plateau
Autor: | Yu Gu, Wei-Liang Lee, Hongbin Chen, Daren Lu, Bin Zhao, Xuehua Fan, Kuo-Nan Liou |
---|---|
Rok vydání: | 2019 |
Předmět: |
Hydrology
Atmospheric Science geography Plateau geography.geographical_feature_category 010504 meteorology & atmospheric sciences Cloud fraction Elevation 010502 geochemistry & geophysics Snow 01 natural sciences Snowmelt Climatology Environmental science Climate model Precipitation Surface runoff 0105 earth and related environmental sciences |
Zdroj: | Climate Dynamics. 53:6919-6932 |
ISSN: | 1432-0894 0930-7575 |
DOI: | 10.1007/s00382-019-04966-z |
Popis: | The long-term effects of complex terrain on solar energy distributions and surface hydrology over the Tibetan Plateau (TP) are investigated using the 4th version of the global Community Climate System Model (CCSM4) coupled with a 3-D radiative transfer (RT) parameterization. We examine the differences between the results from CCSM4 with the 3-D RT parameterization and the results from CCSM4 with the plane-parallel RT scheme. In January (winter), the net surface solar flux (FSNS) displays negative deviations over valleys and the north slopes of mountains, especially in the northern margin of the TP, as a result of the 3-D shadow effect. Positive deviations in FSNS in January are found over the south slopes of mountains and over mountain tops, where more solar flux is intercepted. The deviations in total cloud fraction and snow water equivalent (SWE) exhibit patterns opposite to that of FSNS. The SWE decreases due to the 3-D mountain effect in spring and the magnitude of this effect depends on the terrain elevations. The SWE is reduced by 1–17 mm over the TP in April, with the largest decrease in SWE at an elevation of 3.5–4.5 km. Negative deviations in precipitation are found throughout the year, except in May and December, and they follow the seasonal variations in the deviations in total cloud fraction. The total liquid runoff at 3.5–4.5 km elevation increases in April due to earlier (March) snowmelt caused by increased downward solar radiation. The possible deviations in surface energy and SWE over the TP, caused by plane-parallel assumption in most climate models may result in biases in the liquid runoff and the river water resources over the TP and downstream. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |