GORENSTEIN MODULES, FINITE INDEX, AND FINITE COHEN–MACAULAY TYPE

Autor: Graham J. Leuschke
Rok vydání: 2002
Předmět:
Zdroj: Communications in Algebra. 30:2023-2035
ISSN: 1532-4125
0092-7872
DOI: 10.1081/agb-120013229
Popis: A Gorenstein module over a local ring R is a maximal Cohen–Macaulay module of finite injective dimension. We use existence of Gorenstein modules to extend a result due to S. Ding: A Cohen–Macaulay ring of finite index, with a Gorenstein module, is Gorenstein on the punctured spectrum. We use this to show that a Cohen–Macaulay local ring of finite Cohen–Macaulay type is Gorenstein on the punctured spectrum. Finally, we show that for a large class of rings (including all excellent rings), the Gorenstein locus of a finitely generated module is an open set in the Zariski topology.
Databáze: OpenAIRE