Critical fractional elliptic equations with exponential growth
Autor: | Eduardo Huerto Caqui, Hamilton Bueno, Olímpio H. Miyagaki |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Elliptic and Parabolic Equations. 7:75-99 |
ISSN: | 2296-9039 2296-9020 |
DOI: | 10.1007/s41808-021-00095-z |
Popis: | In this paper we establish, using variational methods combined with the Moser–Trudinger inequality, existence and multiplicity of weak solutions for a class of critical fractional elliptic equations with exponential growth without a Ambrosetti–Rabinowitz-type condition. The interaction of the nonlinearities with the spectrum of the fractional operator will be used to study the existence and multiplicity of solutions. The main technical result proves that a local minimum in $$C_{s}^0 (\overline{\Omega })$$ is also a local minimum in $$W^{s,p}_0$$ for exponentially growing nonlinearities. |
Databáze: | OpenAIRE |
Externí odkaz: |