Critical fractional elliptic equations with exponential growth

Autor: Eduardo Huerto Caqui, Hamilton Bueno, Olímpio H. Miyagaki
Rok vydání: 2021
Předmět:
Zdroj: Journal of Elliptic and Parabolic Equations. 7:75-99
ISSN: 2296-9039
2296-9020
DOI: 10.1007/s41808-021-00095-z
Popis: In this paper we establish, using variational methods combined with the Moser–Trudinger inequality, existence and multiplicity of weak solutions for a class of critical fractional elliptic equations with exponential growth without a Ambrosetti–Rabinowitz-type condition. The interaction of the nonlinearities with the spectrum of the fractional operator will be used to study the existence and multiplicity of solutions. The main technical result proves that a local minimum in $$C_{s}^0 (\overline{\Omega })$$ is also a local minimum in $$W^{s,p}_0$$ for exponentially growing nonlinearities.
Databáze: OpenAIRE