On ramification index of composition of complete discrete valuation fields
Autor: | Pasupulati Sunil Kumar |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Proceedings - Mathematical Sciences. 130 |
ISSN: | 0973-7685 0253-4142 |
DOI: | 10.1007/s12044-020-00572-w |
Popis: | For an extension L/K of discrete valuation fields, let $$e_{L/K}$$ , $${\mathfrak {O}}_{L}$$ denote the ramification index and valuation ring of L/K respectively. Let K be a complete discrete valuation field and $$L_1/K$$ , $$L_2/K$$ be finite linearly disjoint extensions over K. We show that if $${\mathfrak {O}}_{L_1L_2} ={\mathfrak {O}}_{L_1}{\mathfrak {O}}_{L_2}$$ or $$\mathrm {gcd}(e_{L_1/K}, e_{L_2/K}) =1$$ , and one of the residue fields $$l_1/k,$$ $$l_2/k$$ is separable, then $$e_{L_1L_2/L_1} =e_{L_2/K}.$$ The analogous results for the residue degrees are also true. |
Databáze: | OpenAIRE |
Externí odkaz: |