Mathematical Modeling of Glacier Melting in the Arctic with Regard to Climate Warming

Autor: Fedotov, A.A., Kaniber, V.V., Khrapov, P.V.
Jazyk: angličtina
Rok vydání: 2021
Předmět:
DOI: 10.25559/sitito.17.202104.1007-1021
Popis: The paper studies the initial boundary-edge problem for the non-stationary one-dimensional thermal conductivity equation, which models the temperature distribution in the glacier. The mathematical model has been constructed taking into account solid-liquid phase transitions. Data from meteorological stations were used to determine the model parameters, with the help of which the necessary physical and thermophysical characteristics of the calculation area were obtained. The finite volume method was used for numerical solution of the problem. The non-stationary periodic regime was investigated, temperature-depth dependences were plotted for each month and the depth of the active layer and the depth of zero annul amplitudes for two glaciers: the Vavilov Ice Cap and the Austre Gronfjordbreen were found. Glacier temperature regime forecast for the year 2100 are modelled for three global warming scenarios: a moderate RCP2.6, the RCP7 corresponding to current emissions and the RCP1.9 adopted at the Paris Agreement in 2015. The scenarios are based on the IPCC AR5 and SSP databases, and on the existing policy framework and stated policy intentions The IEA Stated Policies Scenario (STEPS). The plotted graphs clearly show that even the moderate RCP2.6 scenario (2°C warming) can lead to noticeable glacier thawing, while the RCP7 scenario would lead to unprecedented consequences. In turn, a scenario limiting climate warming to 1.5°C from pre-industrial levels (RCP1.9) would markedly slow glacial thawing. Having analysed the irreversible degradation of the ice cover at a warming of an additional 0.5°C, and considering the adverse effects of this warming on many areas, the need to contain the rate of temperature increase is clear. The simulations have clearly confirmed the impact of global warming on our planet's cryosphere.
В статье исследуется начально-краевая задача для нестационарного одномерного уравнения теплопроводности, моделирующего распределение температуры в леднике. Математическая модель построена с учетом фазовых переходов твердое тело-жидкость.Для определения параметров модели использовались данные с метеорологических станций, с помощью которых были получены необходимые физические и теплофизические характеристики расчетной зоны. Для численного решения задачи был использован метод конечных объемов. Был исследован нестационарный периодический режим, построены зависимости температуры от глубины для каждого месяца и найдена глубина активного слоя, а также глубина нулевых амплитуд аннуляций для двух ледников: ледяной шапки Вавилова и Аустре-Гронфьордбрина. Прогноз температурного режима ледников на 2100 год смоделирован для трех сценариев глобального потепления: умеренный RCP2.6, RCP7, соответствующий текущим выбросам, и RCP1.9, принятый в Парижском соглашении в 2015 году. Сценарии основаны на базах данных IPCC AR5 и SSP, а также на существующей структуре политики и заявленных политических намерениях в Сценарии (STEPS), изложенном МЭА. Построенные графики ясно показывают, что даже умеренный сценарий RCP2.6 (потепление на 2°C) может привести к заметному таянию ледников, в то время как сценарий RCP7 приведет к беспрецедентным последствиям. В свою очередь, сценарий, ограничивающий потепление климата до 1,5°C по сравнению с доиндустриальным уровнем (RCP1.9), заметно замедлил бы таяние ледников. Проанализировав необратимое разрушение ледяного покрова при потеплении еще на 0,5°C, и учитывая неблагоприятные последствия этого потепления для многих районов, необходимость сдерживания темпов повышения температуры становится очевидной. Моделирование четко подтвердило влияние глобального потепления на криосферу нашей планеты.
Международный научный журнал "Современные информационные технологии и ИТ-образование", Выпуск 4 2021, Pages 1007-1021
Databáze: OpenAIRE