Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media
Autor: | Marcel Rennoch, Armin Lechleiter |
---|---|
Rok vydání: | 2017 |
Předmět: |
Control and Optimization
Computer Science::Information Retrieval Mathematical analysis Banach space Admissible set 010103 numerical & computational mathematics Inverse problem 01 natural sciences 010101 applied mathematics Tikhonov regularization Nonlinear system Modeling and Simulation Norm (mathematics) Inverse scattering problem Discrete Mathematics and Combinatorics Pharmacology (medical) Schatten norm 0101 mathematics Analysis Mathematics |
Zdroj: | Inverse Problems & Imaging. 11:151-176 |
ISSN: | 1930-8345 |
DOI: | 10.3934/ipi.2017008 |
Popis: | We consider Tikhonov and sparsity-promoting regularization in Banach spaces for inverse scattering from penetrable anisotropic media. To this end, we equip an admissible set of material parameters with the \begin{document}$L^p$\end{document} -topology and use Meyers' gradient estimate for solutions of elliptic equations to analyze the dependence of scattered fields and their Frechet derivatives on the material parameter. This allows to show convergence of a non-linear Tikhonov regularization against a minimum-norm solution to the inverse problem, but also to set up sparsity-promoting versions of that regularization method. For both approaches, the discrepancy is defined via a \begin{document}$q$\end{document} -Schatten norm or an \begin{document}$L^q$\end{document} -norm with \begin{document}$1 . Numerical reconstruction examples indicate the reconstruction quality of the method, as well as the qualitative dependence of the reconstructions on \begin{document}$q$\end{document} . |
Databáze: | OpenAIRE |
Externí odkaz: |