Linear periodic boundary-value problem for a second-order hyperbolic equation. II. Quasilinear problem

Autor: N. G. Khoma
Rok vydání: 1998
Předmět:
Zdroj: Ukrainian Mathematical Journal. 50:1917-1923
ISSN: 1573-9376
0041-5995
Popis: In three spaces, we find exact classical solutions of the boundary-value periodic problem utt - a2uxx = g(x, t) u(0, t) = u(π, t) = 0, u(x, t + T) = u(x, t), x ∈ ℝ, t ∈ ℝ. We study the periodic boundary-value problem for a quasilinear equation whose left-hand side is the d’Alembert operator and whose right-hand side is a nonlinear operator.
Databáze: OpenAIRE