Popis: |
In recent days, there has been a significant development in the field of computers as they need to handle the vast resource using cloud computing and performing various cloud services. The cloud helps to manage the resource dynamically based on the user demand and is transmitted to multiple users in healthcare organizations. Mainly the cloud helps to reduce the performance cost and enhance data scalability & flexibility. The main challenges faced by the existing technologies integrated with the cloud need to be solved in managing the data and the problem of data heterogeneity. As the above challenges, mitigation makes the services more data stable should the healthcare organization identify the malware. Developed countries are utilizing the services through the cloud as it needs more security. In this work, a secure data agreement approach is proposed as it is associated with feature extraction with cloud computing for healthcare to examine and enhance the user parties to make effective decisions. The proposed method classifies into two components. The first component deals with the modified data formulation algorithm, used to identify the relationship among variables, i.e., data correlation, and validate the data using trained data. It helps to achieve data reduction and data scale development. In the second component, Feature selection is used to validate the model using subset selection to determine the model fitness based on the data. It is necessary to have more samples of different Android applications to examine the framework using factors like data correctness and the F-measure. As feature selection is a concern, this study focuses on Chi-square, gain ratio, information gain, logistic regression analysis, OneR, and PCA. |