Two-injection workflow for a liquid chromatography/LTQ-Orbitrap system to completein vivobiotransformation characterization: demonstration with buspirone metabolite identification

Autor: Xiangyu Jiang, Jie Ding, Austin C. Li, Jon Denissen
Rok vydání: 2009
Předmět:
Zdroj: Rapid Communications in Mass Spectrometry. 23:3003-3012
ISSN: 0951-4198
DOI: 10.1002/rcm.4207
Popis: The relatively high background matrix in in vivo samples typically poses difficulties in drug metabolite identification, and causes repeated analytical runs on unit resolution liquid chromatography/mass spectrometry (LC/MS) systems before the completion of biotransformation characterization. Ballpark parameter settings for the LTQ-Orbitrap are reported herein that enable complete in vivo metabolite identification within two HPLC/MS injections on the hybrid LTQ-Orbitrap data collection system. By setting the FT survey full scan at 60K resolution to trigger five dependent LTQ MS(2) scans, and proper parameters of Repeat Duration, Exclusion Duration and Repeat Count for the first run (exploratory), the Orbitrap achieved the optimal parallel data acquisition capability and collected maximum number of product ion scans. Biotransformation knowledge based prediction played the key role in exact mass ion extraction and multiple mass defect filtration when the initial data was processed. Meanwhile, product ion extraction and neutral loss extraction of the initial dependent data provided additional bonus in identifying metabolites. With updated parent mass list and the data-dependent setting to let only the ions on the parent mass list trigger dependent scans, the second run (confirmatory) ensures that all precursor ions of identified metabolites trigger not only dependent product ion scans, but also at or close to the highest concentration of the eluted metabolite peaks. This workflow has been developed for metabolite identification of in vivo or ADME studies, of which the samples typically contain a high level of complex matrix. However, due to the proprietary nature of the in vivo studies, this workflow is presented herein with in vitro buspirone sample incubated with human liver microsomes (HLM). The major HLM-mediated biotransformation on buspirone was identified as oxidation or hydroxylation since five mono- (+16 Da), seven di- (+32 Da) and at least three tri-oxygenated (+48 Da) metabolites were identified. Besides the metabolites 1-pyrimidinylpiperazine (1-PP) and hydroxylated 1-PP that formed by N-dealkylation, a new metabolite M308 was identified as the result of a second N-dealkylation of the pyrimidine unit. Two new metabolites containing the 8-butyl-8-azaspiro[4,5]decane-7,9-dione partial structure, M240 and M254, were also identified that were formed apparently due to the first N-dealkylation of the 1-PP moiety.
Databáze: OpenAIRE