Comparative analysis of drape characteristics of actually and virtually draped fabrics
Autor: | Evrim Buyukaslan, Fatma Kalaoglu, Simona Jevšnik |
---|---|
Rok vydání: | 2018 |
Předmět: |
010407 polymers
Engineering drawing Commercial software Polymers and Plastics Computer science business.industry Materials Science (miscellaneous) 05 social sciences computer.software_genre 01 natural sciences General Business Management and Accounting 0104 chemical sciences Simulation software Software 0502 economics and business Business Management and Accounting (miscellaneous) 050211 marketing Node (circuits) business computer ComputingMethodologies_COMPUTERGRAPHICS |
Zdroj: | International Journal of Clothing Science and Technology. 30:286-301 |
ISSN: | 0955-6222 |
DOI: | 10.1108/ijcst-06-2017-0085 |
Popis: | Purpose The purpose of this paper is to compare real fabric drape images and virtual fabric drape images created by a commercial software. To achieve an in-depth comparison, actual and virtual drape shape properties were considered under three categories: drape area, number of nodes and shape of folds. The results of this research are expected to be useful to improve the reality and accuracy of fabric and garment. Design/methodology/approach Five different fabrics were selected for this study. Fabrics’ mechanical properties were tested by fabric assurance for simple testing method, while drape properties were measured by a Cusick drape meter. A commercial garment simulation was used to generate virtual fabric drapes. Real fabric drape images and virtual fabric drape images were analyzed by an image analysis software and results were used to calculate drape properties. Regression analysis was performed to compare real fabric drape and virtual fabric drape properties. Findings Differences between real fabric drape and virtual fabric drape were stated clearly. Simulation software was found to be insufficient to reflect drape area. However, simulations were quite successful corresponding to the number of nodes. Only one simulation had +2 nodes than its actual counterpart. This study showed that area and node shape representations of simulation software should be improved while node numbers are sufficiently represented. Research limitations/implications There are alternative 3D garment simulation software available to the fashion business. All these companies are working on to improve their simulation reality and accuracy. Some of them are also offering various equipment to measure the fabric properties. In this study, Optitex 3D Suite was selected as the simulation software due to several reasons as explained in this paper. However, other simulation programs might also be employed to perform virtual fabric drapes. Furthermore, in this study, the drape images of five woven fabrics were compared. The fabric selection was done according to a pre-test and consequently similar fabrics were determined to be the subject of the study. However, the more the number of the fabrics, the better the comparison and eventually the better the assessment of simulation success. Therefore, it is prospected to test more fabrics with versatile fabric properties for further studies. Originality/value Drape shape was observed from three perspectives: drape area, node numbers, and node shapes. Dealing the problem from these perspectives provided an in-depth comparison of real and virtual drapes. In this study, standard deviation of peak angles was used to explain node distribution that is new to the literature to the authors’ knowledge. |
Databáze: | OpenAIRE |
Externí odkaz: |