Autor: |
Chandak, Giriraj R, Silver, Matt J, Saffari, Ayden, Lillycrop, Karen A, Shrestha, Smeeta, Sahariah, Sirazul Amin, Di Gravio, Chiara, Goldberg, Gail, Tomar, Ashutosh Singh, Betts, Modupeh, Sajjadi, Sara, Acolatse, Lena, James, Philip, Issarapu, Prachand, Kumaran, Kalyanaraman, Potdar, Ramesh D, Prentice, Andrew M, Fall, Caroline Hd |
Jazyk: |
angličtina |
Předmět: |
|
Popis: |
BACKGROUND: Animal studies have shown that nutritional exposures during pregnancy can modify epigenetic marks regulating fetal development and susceptibility to later disease, providing a plausible mechanism to explain the developmental origins of health and disease. Human observational studies have shown that maternal peri-conceptional diet predicts DNA methylation in offspring. However, a causal pathway from maternal diet, through changes in DNA methylation, to later health outcomes has yet to be established. The EMPHASIS study (Epigenetic Mechanisms linking Pre-conceptional nutrition and Health Assessed in India and Sub-Saharan Africa, ISRCTN14266771) will investigate epigenetically mediated links between peri-conceptional nutrition and health-related outcomes in children whose mothers participated in two randomized controlled trials of micronutrient supplementation before and during pregnancy. METHODS: The original trials were the Mumbai Maternal Nutrition Project (MMNP, ISRCTN62811278) in which Indian women were offered a daily snack made from micronutrient-rich foods or low-micronutrient foods (controls), and the Peri-conceptional Multiple Micronutrient Supplementation Trial (PMMST, ISRCTN13687662) in rural Gambia, in which women were offered a daily multiple micronutrient (UNIMMAP) tablet or placebo. In the EMPHASIS study, DNA methylation will be analysed in the children of these women (~1,100 children aged 5-7 y in MMNP and 298 children aged 7-9 y in PMMST). Cohort-specific and cross-cohort effects will be explored. Differences in DNA methylation between allocation groups will be identified using the Illumina Infinium MethylationEPIC array, and by pyrosequencing top hits and selected candidate loci. Associations will be analysed between DNA methylation and health-related phenotypic outcomes, including size at birth, and children's post-natal growth, body composition, skeletal development, cardio-metabolic risk markers (blood pressure, serum lipids, plasma glucose and insulin) and cognitive function. Pathways analysis will be used to test for enrichment of nutrition-sensitive loci in biological pathways. Causal mechanisms for nutrition-methylation-phenotype associations will be explored using Mendelian Randomization. Associations between methylation unrelated to supplementation and phenotypes will also be analysed. CONCLUSION: The study will increase understanding of the epigenetic mechanisms underpinning the long-term impact of maternal nutrition on offspring health. It will potentially lead to better nutritional interventions for mothers preparing for pregnancy, and to identification of early life biomarkers of later disease risk. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|