Quantized universal enveloping superalgebra of type Q and a super-extension of the Hecke algebra
Autor: | G. I. Olshanski |
---|---|
Rok vydání: | 1992 |
Předmět: |
Hecke algebra
Pure mathematics Quantum group Poincaré–Birkhoff–Witt theorem Duality (optimization) Statistical and Nonlinear Physics Universal enveloping algebra Lie superalgebra Type (model theory) Superalgebra Mathematics::Quantum Algebra Mathematics::Representation Theory Mathematical Physics Mathematics |
Zdroj: | Letters in Mathematical Physics. 24:93-102 |
ISSN: | 1573-0530 0377-9017 |
DOI: | 10.1007/bf00402673 |
Popis: | The quantized universal enveloping algebra Uq(q(n)) of the ‘strange’ Lie superalgebra q(n) and a super-analogue HCq(N) of the Hecke algebra Hq(N) are constructed. These objects are in a duality similar to the known duality between Uq(gl(n)) and Hq(N). |
Databáze: | OpenAIRE |
Externí odkaz: |