Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region
Autor: | Keeyoon Sung, Brian J. Drouin, Vivienne H. Payne, Linda R. Brown, D. Chris Benner, Mary Ann H. Smith, V. Malathy Devi, Shanshan Yu, Timothy J. Crawford, Robert R. Gamache, Charles E. Miller, Arlan W. Mantz |
---|---|
Rok vydání: | 2016 |
Předmět: |
Materials science
010504 meteorology & atmospheric sciences High resolution Mole fraction 01 natural sciences Atomic and Molecular Physics and Optics Spectral line 010309 optics Formalism (philosophy of mathematics) Ab initio quantum chemistry methods Non-linear least squares 0103 physical sciences Curve fitting Relaxation matrix Physical and Theoretical Chemistry Atomic physics Spectroscopy 0105 earth and related environmental sciences |
Zdroj: | Journal of Molecular Spectroscopy. 326:21-47 |
ISSN: | 0022-2852 |
DOI: | 10.1016/j.jms.2016.02.012 |
Popis: | This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014. |
Databáze: | OpenAIRE |
Externí odkaz: |