О нелокальной задаче с дробной производной Римана-Лиувилля для уравнения смешанного типа

Autor: Anna V Tarasenko, Irina P. Egorova
Rok vydání: 2017
Předmět:
Zdroj: Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 21:112-121
ISSN: 2310-7081
1991-8615
DOI: 10.14498/vsgtu1499
Popis: The unique solvability is investigated for the problem of equation with partial fractional derivative of Riemann-Liouville and boundary condition that contains the generalized operator of fractional integro-differentiation. The uniqueness theorem for the solution of the problem is proved on the basis of the principle of optimality for a nonlocal parabolic equation and the principle of extremum for the operators of fractional differentiation in the sense of Riemann-Liouville. The proof of the existence of solutions is equivalent to the problem of solvability of differential equations of fractional order. The solution is obtained in explicit form.
Databáze: OpenAIRE