О нелокальной задаче с дробной производной Римана-Лиувилля для уравнения смешанного типа
Autor: | Anna V Tarasenko, Irina P. Egorova |
---|---|
Rok vydání: | 2017 |
Předmět: |
Basis (linear algebra)
Differential equation Applied Mathematics Mathematical analysis Condensed Matter Physics Fractional calculus Operator (computer programming) Uniqueness theorem for Poisson's equation Mechanics of Materials Modeling and Simulation Bellman equation Order (group theory) Boundary value problem Mathematical Physics Software Analysis Mathematics |
Zdroj: | Вестник Самарского государственного технического университета. Серия «Физико-математические науки». 21:112-121 |
ISSN: | 2310-7081 1991-8615 |
DOI: | 10.14498/vsgtu1499 |
Popis: | The unique solvability is investigated for the problem of equation with partial fractional derivative of Riemann-Liouville and boundary condition that contains the generalized operator of fractional integro-differentiation. The uniqueness theorem for the solution of the problem is proved on the basis of the principle of optimality for a nonlocal parabolic equation and the principle of extremum for the operators of fractional differentiation in the sense of Riemann-Liouville. The proof of the existence of solutions is equivalent to the problem of solvability of differential equations of fractional order. The solution is obtained in explicit form. |
Databáze: | OpenAIRE |
Externí odkaz: |