Thermal and Mechanical Analyses of Dry Clutch Disk made of Functionally Graded Material

Autor: Ibrahim Ahmed Ibrahim Ali, Saeed Asiri
Rok vydání: 2021
DOI: 10.21203/rs.3.rs-1111005/v1
Popis: This paper presents an innovative utility of Functionally Graded Aluminum Matrix Composite (FGAMC) with Silicon Carbide as a friction material in clutches since having an acceptable friction coefficient and high wear resistance. FGAMC’s properties were calculated using rule-of-mixture and power law, represented by layered geometry. FGAMC’s behavior is examined considering statics, dynamics, thermal and wear. Analyses were done using Finite Element method, by ANSYS. Results are discussed by comparing FGAMC’s clutch to Aluminum matrix composite with 20% of Silicon Carbide clutch and E-glass clutch. Clutches design based on the common size and working conditions of clutches in mid-size and heavy automobiles. Most analyses revels FGAMC’s clutch has higher strain than AMC’s clutch with less deformation in thickness direction and less stresses. FGAMC’s clutch has higher mass leading to lower first natural frequency but with low resulted deformations. Transient analyses showed 10 times fewer maximum deformations for FGAMC’s clutch than AMC and E-glass with lower strains and higher stress but in much less area for FGAMC’s clutch. Wear which indicates working life of a clutch, have been studied using Archard Wear Equation in ANSYS, FGAMC’s clutch has 10 times lower wear with much less affected area compared to AMC and E-glass. Thermal analysis results of the three clutches are close to each other with 0.07 watts between FGAMC’s and AMC’s clutches, and 0.03 watts between FGAMC’s and E-Glass’s clutches.
Databáze: OpenAIRE