Nested monte carlo search expression discovery for the automated design of fuzzy ART category choice functions

Autor: Leonardo Enzo Brito da Silva, Donald C. Wunsch, Daniel R. Tauritz, Marketa Illetskova, Islam Elnabarawy
Rok vydání: 2019
Předmět:
Zdroj: GECCO (Companion)
DOI: 10.1145/3319619.3322050
Popis: While the performance of many neural network and machine learning schemes has been improved through the automated design of various components of their architectures, the automated improvement of Adaptive Resonance Theory (ART) neural networks remains relatively unexplored. Recent work introduced a genetic programming (GP) approach to improve the performance of the Fuzzy ART neural network employing a hyper-heuristic approach to tailor Fuzzy ART's category choice function to specific problems. The GP method showed promising results. However, GP is not the only tool that can be used for automatic improvement. Among other methods, Nested Monte Carlo Search (NMCS) was recently applied to expression discovery and outperformed traditional evolutionary approaches by finding better solutions in fewer evaluations. This work applies NMCS to the discovery of new Fuzzy ART category choice functions targeted to specific problems with results demonstrating its ability to find better performing Fuzzy ART networks than the GP approach.
Databáze: OpenAIRE