Online Routing Over Parallel Networks: Deterministic Limits and Data-driven Enhancements

Autor: Devansh Jalota, Dario Paccagnan, Maximilian Schiffer, Marco Pavone
Rok vydání: 2023
Předmět:
Zdroj: INFORMS Journal on Computing.
ISSN: 1526-5528
1091-9856
Popis: Over the past decade, GPS-enabled traffic applications such as Google Maps and Waze have become ubiquitous and have had a significant influence on billions of daily commuters’ travel patterns. A consequence of the online route suggestions of such applications, for example, via greedy routing, has often been an increase in traffic congestion since the induced travel patterns may be far from the system optimum. Spurred by the widespread impact of traffic applications on travel patterns, this work studies online traffic routing in the context of capacity-constrained parallel road networks and analyzes this problem from two perspectives. First, we perform a worst-case analysis to identify the limits of deterministic online routing. Although we find that deterministic online algorithms achieve finite, problem/instance-dependent competitive ratios in special cases, we show that for a general setting the competitive ratio is unbounded. This result motivates us to move beyond worst-case analysis. Here, we consider algorithms that exploit knowledge of past problem instances and show how to design data-driven algorithms whose performance can be quantified and formally generalized to unseen future instances. We then present numerical experiments based on an application case for the San Francisco Bay Area to evaluate the performance of the proposed data-driven algorithms compared with the greedy algorithm and two look-ahead heuristics with access to additional information on the values of time and arrival time parameters of users. Our results show that the developed data-driven algorithms outperform commonly used greedy online-routing algorithms. Furthermore, our work sheds light on the interplay between data availability and achievable solution quality. History: Accepted by Andrea Lodi, Area Editor for Design and Analysis of Algorithms–Discrete. Funding: This work was supported by National Science Foundation (NSF) Award 1830554 and by the German Research Foundation (DFG) under [Grant 449261765]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2023.1275 .
Databáze: OpenAIRE