On the Importance of the Jacobian Determinant in Parameter Inference for Random Parameter and Random Measurement Error Models
Autor: | Shelby R. Stanhope, David Swigon, Jonathan E. Rubin, Sven Zenker |
---|---|
Rok vydání: | 2019 |
Předmět: |
Statistics and Probability
Dynamical systems theory Applied Mathematics Multilevel model Inference Parameter distribution 010103 numerical & computational mathematics Bayesian inference 01 natural sciences 010104 statistics & probability symbols.namesake Modeling and Simulation Jacobian matrix and determinant symbols Discrete Mathematics and Combinatorics Errors-in-variables models Applied mathematics 0101 mathematics Statistics Probability and Uncertainty Randomness Mathematics |
Zdroj: | SIAM/ASA Journal on Uncertainty Quantification. 7:975-1006 |
ISSN: | 2166-2525 |
DOI: | 10.1137/17m1114405 |
Popis: | Random parameter models are used to describe natural phenomena governed by deterministic processes in situations where such descriptions require randomness in the parameters of the model (such as m... |
Databáze: | OpenAIRE |
Externí odkaz: |