Computing abelian subalgebras for linear algebras of upper-triangular matrices from an algorithmic perspective

Autor: Juan Núñez, Ángel F. Tenorio, Manuel Ceballos
Rok vydání: 2016
Předmět:
Zdroj: Analele Universitatii "Ovidius" Constanta - Seria Matematica. 24:137-147
ISSN: 1844-0835
DOI: 10.1515/auom-2016-0032
Popis: In this paper, the maximal abelian dimension is algorithmically and computationally studied for the Lie algebra hn, of n×n upper-triangular matrices. More concretely, we define an algorithm to compute abelian subalgebras of hn besides programming its implementation with the symbolic computation package MAPLE. The algorithm returns a maximal abelian subalgebra of hn and, hence, its maximal abelian dimension. The order n of the matrices hn is the unique input needed to obtain these subalgebras. Finally, a computational study of the algorithm is presented and we explain and comment some suggestions and comments related to how it works.
Databáze: OpenAIRE