Learning optimal control in deterministic systems

Autor: Stephan Pareigis
Rok vydání: 1998
Předmět:
Zdroj: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 78:1033-1034
ISSN: 0044-2267
DOI: 10.1002/zamm.19980781585
Popis: Learning algorithms for optimal control problems have similarity with numerical treatment of the Bellman-equation of dynamic programming. The main difference is, that in case of learning the value iteration depends on information from the system, which is not necessarily given in the nodes of a state-space discretization. Two updating-schemes are presented for evaluating the learned information and their applicability is demonstrated on a simple learning problem.
Databáze: OpenAIRE