Popis: |
Novel, potentially bioactive, fluorinated branched-chain monosaccharides were obtained by reaction of diethylaminosulphur trifluoride (DAST) with a series of methyl 3-C-cyano-3-ethoxycarbonyl-β- d -glucopyranoside derivatives, including the 4,6-O-benzylidene derivative and their 3-C-(N-protected aminomethyl) reduction products, as well as the phenyl 3-C-cyano-3-ethoxycarbonyl-1-thio-α- d -(and β- d -)glucopyranosides. The absolute configuration at C(3) was unambiguously assigned for all compounds on the basis of X-ray crystallographic analysis of methyl 4,6-O-benzylidene-3-C-cyano-3-deoxy-3-ethoxycarbonyl-β- d -glucopyranoside, corroborating the previous tentative assignment by other authors for the 4,6-unprotected compound. The course of the fluorination depended on the reaction temperature and the substitution pattern of the substrate. Thus, for methyl 3-C-cyano-3-ethoxycarbonyl-β- d -glucopyranoside, fluorination occurred exclusively at C(6), but for the phenylthio analogue, a 2-deoxy-2-phenylthio-α- d -manno-configured glycosyl fluoride and its 6-fluoro derivative were obtained, resulting from the expected rearrangement reaction, whilst starting from the phenylthio α anomer, only the unrearranged 6-fluoro compound was formed. Rearrangement was also observed in the fluorination of methyl 4,6-O-benzylidene-3-C-(N-protected aminomethyl)-β- d -glucopyranoside, which led to the 2-O-methyl-α- d -mannopyranosyl fluoride derivative as the sole product. This methodology may constitute a simple route to enantiopure conformationally constrained cyclic fluorinated β-amino acids having the α carbon atom shared with a pyranose ring, although only moderate yields were achieved, particularly in the fluorination step. |