Popis: |
Harmonic decomposition is an analytical technique that is able to express a manifold surface as the sum of a number of simple surface harmonic components. By reconstructing the initial geometry using a reduced number of components, a similar surface is obtained with a lower level of geometric detail. Because small features are filtered out and the resulting surface lies equal parts above and below the original surface, a tailored multi-step SPIF (Single Point Incremental Forming) processing strategy can be devised. This sequential SPIF strategy uses three processing passes to form a workpiece. The first step is a regular SPIF operation using a conventional toolpath strategy to form the reduced geometry. Two finishing steps are then needed, one from the same side to form the smaller features that lies deeper than the reduced geometry and one backwards pass from the other side of the sheet. To add features that need to be shallower than the reduced geometry, the part is flipped around. The used sequence of these finishing steps and the toolpath strategy used significantly influence the final part accuracy and surface quality. The advantages and disadvantages of four of these combined strategies are examined and compared to regular SPIF. |