Dynamical and topological aspects of Lyapunov graphs
Autor: | Ketty A. de Rezende, Margarida P. Mello, Maria Alice Bertolim |
---|---|
Rok vydání: | 2004 |
Předmět: | |
Zdroj: | Qualitative Theory of Dynamical Systems. 4:181-203 |
ISSN: | 1662-3592 1575-5460 |
DOI: | 10.1007/bf02970858 |
Popis: | In this survey we present the interplay between topological dynamical systems theory with network flow theory in order to obtain a continuation result for abstract Lyapunov graphsL(h 0, …, hn, k) in dimensionn with cycle numberk. We also show that an abstract Lyapunov graph satisfies the Poincare-Hopf inequalities if and only if it satisfies the Morse inequalities and the first Betti number γ1 is greater than or equal tok. We define the Morse polytope determined by the Morse inequalities and describe some of its geometrical properties. |
Databáze: | OpenAIRE |
Externí odkaz: |