Quantitative Identification of Pipeline Crack Based on BP Neural Network

Autor: Ming Jiang, Shujun Liu, Sheng Lin Li, Dean He
Rok vydání: 2017
Předmět:
Zdroj: Key Engineering Materials. 737:477-480
ISSN: 1662-9795
DOI: 10.4028/www.scientific.net/kem.737.477
Popis: In the paper, the Metal Magnetic Memory Testing signal of pipeline crack is extracted. The BP neural network is constructed and trained. The experiment shows that the BP neural network can effectively identify the crack parameters of oil and gas pipeline in quantitative.
Databáze: OpenAIRE