Best Error Localizations for Piecewise Polynomial Approximation of Gradients, Functions and Functionals
Autor: | Andreas Veeser |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Lecture Notes in Computational Science and Engineering ISBN: 9783319964140 |
DOI: | 10.1007/978-3-319-96415-7_31 |
Popis: | We consider the approximation of (generalized) functions with continuous piecewise polynomials or with piecewise polynomials that are allowed to be discontinuous. Best error localization then means that the best error in the whole domain is equivalent to an appropriate accumulation of best errors in small domains, e.g., in mesh elements. We review and compare such best error localizations in the three cases of the Sobolev-Hilbert triplet \((H^1_0,L^2,H^{-1})\). |
Databáze: | OpenAIRE |
Externí odkaz: |