Best Error Localizations for Piecewise Polynomial Approximation of Gradients, Functions and Functionals

Autor: Andreas Veeser
Rok vydání: 2019
Předmět:
Zdroj: Lecture Notes in Computational Science and Engineering ISBN: 9783319964140
DOI: 10.1007/978-3-319-96415-7_31
Popis: We consider the approximation of (generalized) functions with continuous piecewise polynomials or with piecewise polynomials that are allowed to be discontinuous. Best error localization then means that the best error in the whole domain is equivalent to an appropriate accumulation of best errors in small domains, e.g., in mesh elements. We review and compare such best error localizations in the three cases of the Sobolev-Hilbert triplet \((H^1_0,L^2,H^{-1})\).
Databáze: OpenAIRE