Strongly primitive species with potentials I: mutations
Autor: | Andrei Zelevinsky, Daniel Labardini-Fragoso |
---|---|
Rok vydání: | 2015 |
Předmět: |
Class (set theory)
Pure mathematics Coprime integers General Mathematics Mathematics::Rings and Algebras 010102 general mathematics Diagonal 01 natural sciences Cluster algebra Combinatorics 0103 physical sciences Mutation (genetic algorithm) Quantitative Biology::Populations and Evolution 010307 mathematical physics 0101 mathematics Mutation theory Mathematics::Representation Theory Mathematics |
Zdroj: | Boletín de la Sociedad Matemática Mexicana. 22:47-115 |
ISSN: | 2296-4495 1405-213X |
Popis: | Motivated by the mutation theory of quivers with potentials developed by Derksen–Weyman–Zelevinsky, and the representation-theoretic approach to cluster algebras it provides, we propose a mutation theory of species with potentials for species that arise from skew-symmetrizable matrices that admit a skew-symmetrizer with pairwise coprime diagonal entries. The class of skew-symmetrizable matrices covered by the mutation theory proposed here contains a class of matrices that do not admit global unfoldings, that is, unfoldings compatible with all possible sequences of mutations. |
Databáze: | OpenAIRE |
Externí odkaz: |