Some consequences of Masser’s counting theorem on elliptic curves
Autor: | Aurélien Galateau, Valéry Mahé |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Pure mathematics Mathematics::Number Theory General Mathematics 010102 general mathematics Sato–Tate conjecture 01 natural sciences Supersingular elliptic curve Elliptic curve point multiplication Elliptic curve Modular elliptic curve 0103 physical sciences Counting points on elliptic curves 010307 mathematical physics 0101 mathematics Schoof's algorithm Division polynomials Mathematics |
Zdroj: | Mathematische Zeitschrift. 285:613-629 |
ISSN: | 1432-1823 0025-5874 |
DOI: | 10.1007/s00209-016-1728-4 |
Popis: | We use Masser’s counting theorem to prove a lower bound for the canonical height in powers of elliptic curves. We also prove the Galois case of the elliptic Lehmer problem, combining Kummer theory and Masser’s result with bounds on the rank and torsion of some groups of rational points on an elliptic curve. |
Databáze: | OpenAIRE |
Externí odkaz: |