Correlated hyperspherical harmonics
Autor: | J. S. Levinger, W. Zickendraht |
---|---|
Rok vydání: | 1992 |
Předmět: |
Physics
Infinite set Nuclear Theory General Physics and Astronomy Schrödinger equation symbols.namesake Harmonics Quantum mechanics Spin-weighted spherical harmonics Bound state Convergence (routing) Physics::Atomic and Molecular Clusters symbols Physics::Atomic Physics Wave function Solid harmonics Mathematical physics |
Zdroj: | Annalen der Physik. 504:110-116 |
ISSN: | 1521-3889 0003-3804 |
Popis: | The expansion of the wavefunction for a bound three particle state in the five-dimensional hyperspace of hyperspherical harmonics in some cases suffers bad convergence, especially for weakly bound states. For this reason correlated hyperspherical harmonics are proposed, of which the ordinary hyperspherical harmonics are one special choice. The “best” suited correlated hyperspherical harmonics are chosen from an infinite set of complete orthogonal systems by a Ritz variational calculation. |
Databáze: | OpenAIRE |
Externí odkaz: |