Physiological and genetic basis for self-aggregation of a thermophilic hydrogenotrophic methanogen,Methanothermobacterstrain CaT2
Autor: | Asao Fujiyama, Xian Ying Meng, Yoshiyuki Sakaki, Tomoyuki Kosaka, Keiji Watanabe, Atsushi Toyoda, Satoshi Hanada, Hidehiro Toh |
---|---|
Rok vydání: | 2013 |
Předmět: |
biology
Rhamnose Thermophile Glycosyltransferase Gene Mannose Methanothermobacter biology.organism_classification Agricultural and Biological Sciences (miscellaneous) Methanogen Microbiology chemistry.chemical_compound chemistry Biochemistry Glycosyltransferase biology.protein Ecology Evolution Behavior and Systematics Bacteria |
Zdroj: | Environmental Microbiology Reports. 6:268-277 |
ISSN: | 1758-2229 |
DOI: | 10.1111/1758-2229.12128 |
Popis: | Summary Several thermophilic hydrogenotrophic methanogens naturally aggregate in their habitats in association with hydrogen-producing bacteria for efficient transfer of the methane fermentation intermediates to produce methane. However, physiology of aggregation and the identity of aggregation-specific genes remain to be elucidated. Here, we isolated and characterized a hydrogen and formate-utilizing Methanothermobacter sp. CaT2 that is capable of self-aggregation and utilizing formate. CaT2 produced methane from propionate oxidation in association with a syntrophic propionate-oxidizing bacterium faster than other methanogens, including Methanothermobacter thermautotrophicus ΔH and Methanothermobacter thermautotrophicus Z-245. CaT2 also aggregated throughout the culture period and was coated with polysaccharides, which was not found on the ΔH and Z-245 cells. Sugar content (particularly of rhamnose and mannose) was also higher in the CaT2 cells than the ΔH and Z-245 cells. Comparative genomic analysis of CaT2 indicated that four candidate genes, all of which encode glycosyltransferase, were involved in aggregation of CaT2. Transcriptional analysis showed that one glycosyltransferase gene was expressed at relatively high levels under normal growth conditions. The polysaccharide layer on the CaT2 cell surface, which is probably assembled by these glycosyltransferases, may be involved in cell aggregation. |
Databáze: | OpenAIRE |
Externí odkaz: |