Lebesgue-type inequalities in greedy approximation
Autor: | Gustavo Garrigós, Eugenio Hernández, Denka Kutzarova, Vladimir Temlyakov, Stephen J. Dilworth |
---|---|
Rok vydání: | 2021 |
Předmět: |
Discrete mathematics
Mathematics::Functional Analysis 010102 general mathematics Banach space Haar Lebesgue integration 01 natural sciences Chebyshev filter symbols.namesake Greedy approximation Norm (mathematics) 0103 physical sciences symbols 010307 mathematical physics 0101 mathematics Greedy algorithm Analysis Mathematics |
Zdroj: | Journal of Functional Analysis. 280:108885 |
ISSN: | 0022-1236 |
DOI: | 10.1016/j.jfa.2020.108885 |
Popis: | We present new results regarding Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces. We improve earlier bounds in [19] for dictionaries satisfying a new property introduced here. We apply these results to derive optimal bounds in two natural examples of sequence spaces. In particular, optimality is obtained in the case of the multivariate Haar system in L p with 1 p ≤ 2 , under the Littlewood-Paley norm. |
Databáze: | OpenAIRE |
Externí odkaz: |