Development of Cu–In–Ga–S quantum dots with a narrow emission peak for red electroluminescence
Autor: | Chang Jiang, Makoto Tozawa, Kazutaka Akiyoshi, Tatsuya Kameyama, Takahisa Yamamoto, Genichi Motomura, Yoshihide Fujisaki, Taro Uematsu, Susumu Kuwabata, Tsukasa Torimoto |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | The Journal of Chemical Physics. 158 |
ISSN: | 1089-7690 0021-9606 |
DOI: | 10.1063/5.0144271 |
Popis: | Narrowing the emission peak width and adjusting the peak position play a key role in the chromaticity and color accuracy of display devices with the use of quantum dot light-emitting diodes (QD-LEDs). In this study, we developed multinary Cu–In–Ga–S (CIGS) QDs showing a narrow photoluminescence (PL) peak by controlling the Cu fraction, i.e., Cu/(In+Ga), and the ratio of In to Ga composing the QDs. The energy gap of CIGS QDs was enlarged from 1.74 to 2.77 eV with a decrease in the In/(In+Ga) ratio from 1.0 to 0. The PL intensity was remarkably dependent on the Cu fraction, and the PL peak width was dependent on the In/(In+Ga) ratio. The sharpest PL peak at 668 nm with a full width at half maximum (fwhm) of 0.23 eV was obtained for CIGS QDs prepared with ratios of Cu/(In+Ga) = 0.3 and In/(In+Ga) = 0.7, being much narrower than those previously reported with CIGS QDs, fwhm of >0.4 eV. The PL quantum yield of CIGS QDs, 8.3%, was increased to 27% and 46% without a PL peak broadening by surface coating with GaSx and Ga–Zn–S shells, respectively. Considering a large Stokes shift of >0.5 eV and the predominant PL decay component of ∼200–400 ns, the narrow PL peak was assignable to the emission from intragap states. QD-LEDs fabricated with CIGS QDs surface-coated with GaSx shells showed a red color with a narrow emission peak at 688 nm with a fwhm of 0.24 eV. |
Databáze: | OpenAIRE |
Externí odkaz: |