A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation

Autor: Zongqi Liang, Yubin Yan, Ruilian Du
Rok vydání: 2019
Předmět:
Zdroj: Journal of Computational Physics. 376:1312-1330
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2018.10.011
Popis: A new high-order finite difference scheme to approximate the Caputo fractional derivative 1 2 ( D t α 0 C f ( t k ) + D t α 0 C f ( t k − 1 ) ) , k = 1 , 2 , … , N , with the convergence order O ( Δ t 4 − α ) , α ∈ ( 1 , 2 ) is obtained when f ‴ ( t 0 ) = 0 , where Δt denotes the time step size. Based on this scheme we introduce a finite difference method for solving fractional diffusion wave equation with the convergence order O ( Δ t 4 − α + h 2 ) , where h denotes the space step size. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
Databáze: OpenAIRE