Conformable Fractional Nikiforov—Uvarov Method
Autor: | Doğan Demirhan, Fevzi Büyükkiliç, H. Karayer |
---|---|
Rok vydání: | 2016 |
Předmět: |
Physics
Physics and Astronomy (miscellaneous) 010308 nuclear & particles physics 010102 general mathematics Order (ring theory) Conformable matrix 01 natural sciences Domain (mathematical analysis) Fractional calculus Schrödinger equation symbols.namesake 0103 physical sciences symbols 0101 mathematics Harmonic oscillator Eigenvalues and eigenvectors Mathematical physics |
Zdroj: | Communications in Theoretical Physics. 66:12-18 |
ISSN: | 0253-6102 |
DOI: | 10.1088/0253-6102/66/1/012 |
Popis: | We introduce conformable fractional Nikiforov—Uvarov (NU) method by means of conformable fractional derivative which is the most natural definition in non-integer calculus. Since, NU method gives exact eigenstate solutions of Schrodinger equation (SE) for certain potentials in quantum mechanics, this method is carried into the domain of fractional calculus to obtain the solutions of fractional SE. In order to demonstrate the applicability of the conformable fractional NU method, we solve fractional SE for harmonic oscillator potential, Woods—Saxon potential, and Hulthen potential. |
Databáze: | OpenAIRE |
Externí odkaz: |