Sampling Theorem Based Fourier–Legendre Transform
Autor: | S. Kuwata, K. Kawaguchi |
---|---|
Rok vydání: | 2020 |
Předmět: |
Sinc function
Applied Mathematics 01 natural sciences Legendre function Domain (mathematical analysis) Legendre transformation Computational Mathematics symbols.namesake Fourier transform Product (mathematics) 0103 physical sciences symbols Applied mathematics Nyquist–Shannon sampling theorem 010306 general physics Legendre polynomials Computer Science::Databases Mathematics |
Zdroj: | International Journal of Applied and Computational Mathematics. 6 |
ISSN: | 2199-5796 2349-5103 |
Popis: | The product of any number of Legendre functions, under a restricted domain, can be expanded by the corresponding Legendre polynomials, with the coefficient being the sinc function. While an analogous expansion can be made for any number of Gengenbauer functions, it is not allowed for more than two Jacobi functions. To obtain such an expansion, the sampling theorem is of great availability. |
Databáze: | OpenAIRE |
Externí odkaz: |