Accurate numerical method for the calculation of doubly excited states in atoms
Autor: | Stéphane Laulan, Samira Barmaki, Marc-André Albert |
---|---|
Rok vydání: | 2019 |
Předmět: |
Physics
Helium atom Rotation method Discretization 010308 nuclear & particles physics Numerical analysis General Physics and Astronomy 01 natural sciences Two-electron atom Schrödinger equation chemistry.chemical_compound symbols.namesake chemistry Excited state 0103 physical sciences symbols Atomic physics 010306 general physics Rotation (mathematics) |
Zdroj: | Canadian Journal of Physics. 97:317-320 |
ISSN: | 1208-6045 0008-4204 |
DOI: | 10.1139/cjp-2018-0222 |
Popis: | We report in this paper computed values of the energy positions and widths of the lowest 1^P^o singlet doubly excited states of the helium atom. The results are obtained by a direct numerical solution of the time-independent Schrodinger equation using a discretization technique with B-spline functions combined with complex rotation method. The present approach has the numerical advantage to generate accurate energy positions and widths in a single calculation. The computed data are in very good agreement with results from other theoretical approaches. Nous reportons dans cet article nos resultats concernant les positions et largeurs energetiques des etats singulets doublement excites de symetrie 1^P^o de l’atome d’helium. Nos resultats sont obtenus par la resolution numerique directe de l’equation de Schrodinger independante du temps avec une technique de discretisation basee sur les fonctions B-splines avec une methode de rotation complexe. Notre methode numerique a pour avantage de generer de facon tres... |
Databáze: | OpenAIRE |
Externí odkaz: |