Arithmetic properties of non-harmonic weak Maass forms
Autor: | David Penniston, Kathrin Bringmann |
---|---|
Rok vydání: | 2008 |
Předmět: |
Pure mathematics
Laplace transform Mathematics::Number Theory Applied Mathematics General Mathematics Harmonic (mathematics) Mathematics::Spectral Theory Type (model theory) Congruence relation Ramanujan's sum Algebra symbols.namesake symbols Algebraic number Eigenvalues and eigenvectors Mathematics |
Zdroj: | Proceedings of the American Mathematical Society. 137:825-833 |
ISSN: | 0002-9939 |
DOI: | 10.1090/s0002-9939-08-09541-5 |
Popis: | We prove the existence of an infinite family of non-harmonic weak Maass forms of varying weights and Laplace eigenvalues having algebraic coefficients, and show that the coefficients of these forms satisfy congruences of Ramanujan type. |
Databáze: | OpenAIRE |
Externí odkaz: |