The cohomology of period domains for reductive groups over local fields
Autor: | Sascha Orlik |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Inventiones mathematicae. 162:523-549 |
ISSN: | 1432-1297 0020-9910 |
DOI: | 10.1007/s00222-005-0452-1 |
Popis: | We compute the etale cohomology of period domains over local fields in the case of a basic isocrystal for quasi-split reductive groups. Period domains, which have been introduced by Rapoport and Zink [RZ], are open admissible rigid-analytic subsets of generalized flag varieties. They parametrize weakly admissible filtrations of a given isocrystal with additional structure of a reductive group. |
Databáze: | OpenAIRE |
Externí odkaz: |