The cohomology of period domains for reductive groups over local fields

Autor: Sascha Orlik
Rok vydání: 2005
Předmět:
Zdroj: Inventiones mathematicae. 162:523-549
ISSN: 1432-1297
0020-9910
DOI: 10.1007/s00222-005-0452-1
Popis: We compute the etale cohomology of period domains over local fields in the case of a basic isocrystal for quasi-split reductive groups. Period domains, which have been introduced by Rapoport and Zink [RZ], are open admissible rigid-analytic subsets of generalized flag varieties. They parametrize weakly admissible filtrations of a given isocrystal with additional structure of a reductive group.
Databáze: OpenAIRE