Homotopic types of right stabilizers and orbits of smooth functions on surfaces

Autor: S. I. Maksimenko
Rok vydání: 2013
Předmět:
Zdroj: Ukrainian Mathematical Journal. 64:1350-1369
ISSN: 1573-9376
0041-5995
DOI: 10.1007/s11253-013-0721-x
Popis: Let M be a connected smooth compact surface and let P be either the number line $$ \mathbb{R} $$ or a circle S 1. For a subset X ⊂ M, by $$ \mathcal{D} $$ (M, X) we denote a group of diffeomorphisms of M fixed on X. We consider a special class $$ \mathcal{F} $$ of smooth mappings f:M → P with isolated singularities containing all Morse mappings. For each mapping f ∈ $$ \mathcal{F} $$ , we consider certain submanifolds X ⊂ M “adapted” to f in a natural way and study the right action of the group $$ \mathcal{D} $$ (M, X) on C ∞( M, P). The main results of the paper describe the homotopic types of the connected components of stabilizers $$ \mathcal{S} $$ (f) and the orbits $$ \mathcal{O} $$ (f) of all mappings f ∈ $$ \mathcal{F} $$ and generalize the results of the author in this field obtained earlier.
Databáze: OpenAIRE