A p-adic analogue of the Borel regulator and the Bloch–Kato exponential map
Autor: | Guido Kings, Annette Huber |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Journal of the Institute of Mathematics of Jussieu. 10:149-190 |
ISSN: | 1475-3030 1474-7480 |
DOI: | 10.1017/s1474748010000216 |
Popis: | In this paper we define a p-adic analogue of the Borel regulator for the K-theory of p-adic fields. The van Est isomorphism in the construction of the classical Borel regulator is replaced by the Lazard isomorphism. The main result relates this p-adic regulator to the Bloch–Kato exponential and the Soulé regulator. On the way we give a new description of the Lazard isomorphism for certain formal groups. We also show that the Soulé regulator is induced by continuous and even analytic classes. |
Databáze: | OpenAIRE |
Externí odkaz: |