𝜆-lemma for families of Riemann surfaces and the critical loci of complex Hénon maps
Autor: | Tanya Firsova, Mikhail Lyubich |
---|---|
Rok vydání: | 2017 |
Předmět: |
Computer Science::Machine Learning
Pure mathematics Lemma (mathematics) Riemann surface 010102 general mathematics Computer Science::Digital Libraries 01 natural sciences Statistics::Machine Learning symbols.namesake 0103 physical sciences Computer Science::Mathematical Software symbols 010307 mathematical physics Geometry and Topology 0101 mathematics Mathematics |
Zdroj: | Conformal Geometry and Dynamics of the American Mathematical Society. 21:111-125 |
ISSN: | 1088-4173 |
DOI: | 10.1090/ecgd/300 |
Popis: | We prove a version of the classical λ \lambda -lemma for holomorphic families of Riemann surfaces. We then use it to show that critical loci for complex Hénon maps that are small perturbations of quadratic polynomials with Cantor Julia sets are all quasiconformally equivalent. |
Databáze: | OpenAIRE |
Externí odkaz: |