𝜆-lemma for families of Riemann surfaces and the critical loci of complex Hénon maps

Autor: Tanya Firsova, Mikhail Lyubich
Rok vydání: 2017
Předmět:
Zdroj: Conformal Geometry and Dynamics of the American Mathematical Society. 21:111-125
ISSN: 1088-4173
DOI: 10.1090/ecgd/300
Popis: We prove a version of the classical λ \lambda -lemma for holomorphic families of Riemann surfaces. We then use it to show that critical loci for complex Hénon maps that are small perturbations of quadratic polynomials with Cantor Julia sets are all quasiconformally equivalent.
Databáze: OpenAIRE