Statistical joint channel estimation and data detection for multiple antenna wireless communications

Autor: Mao, Xuehong
Jazyk: angličtina
Rok vydání: 2013
Předmět:
DOI: 10.26053/0h-nqpx-5b00
Popis: Multiple-input and multiple-output (MIMO) technique has emerged as a key feature for future generations of wireless communication systems. It increases the channel capacity proportionate to the minimum number of transmit and receive antennas. This dissertation addresses the receiver design for high-rate MIMO communications in at fading environments. The emphasis of the thesis is on the cases where channel state information (CSI) is not available and thus, clever channel estimation algorithms have to be developed to bene t from the maximum available channel capacity. The thesis makes four distinct novel contributions. First, we note that the conventional MCMC-MIMO detector presented in the prior work may deteriorate as SNR increases. We suggest and show through computer simulations that this problem to a great extent can be solved by initializing the MCMC detector with regulated states which are found through linear detectors. We also introduce the novel concept of staged-MCMC in a turbo receiver, where we start the detection process at a lower complexity and increase complexity only if the data could not be correctly detected in the present stage of data detection. Second, we note that in high-rate MIMO communications, joint data detection and channel estimation poses new challenges when a turbo loop is used to improve the quality of the estimated channel and the detected data. Erroneous detected data may propagate in the turbo loop and, thus, degrade the performance of the receiver signi cantly. This is referred to as error propagation. We propose a novel receiver that decorrelates channel estimation and the detected data to avoid the detrimental e ect of error propagation. Third, the dissertation studies joint channel estimation and MIMO detection over a continuously time-varying channel and proposes a new dual-layer channel estimator to overcome the complexity of optimal channel estimators. The proposed dual-layer channel estimator reduces the complexity of the MIMO detector with optimal channel estimator by an order of magnitude at a cost of a negligible performance degradation, on the order of 0.1 to 0.2 dB. The fourth contribution of this dissertation is to note that the Wiener ltering techniques that are discussed in this dissertation and elsewhere in the literature assume that channel (time-varying) statistics are available. We propose a new method that estimates such statistics using the coarse channel estimates obtained through pilot symbols. The dissertation also makes an additional contribution revealing di erences between the MCMC-MIMO and LMMSE-MIMO detectors. We nd that under the realistic condition where CSI has to be estimated, hence the available channel estimate will be noisy, the MCMC-MIMO detector outperforms the LMMSE-MIMO detector with a signi cant margin.
Databáze: OpenAIRE